Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Microsc Microanal ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525890

RESUMO

Correlative light and electron microscopy (CLEM) methods are powerful methods that combine molecular organization (from light microscopy) with ultrastructure (from electron microscopy). However, CLEM methods pose high cost/difficulty barriers to entry and have very low experimental throughput. Therefore, we have developed an indirect correlative light and electron microscopy (iCLEM) pipeline to sidestep the rate-limiting steps of CLEM (i.e., preparing and imaging the same samples on multiple microscopes) and correlate multiscale structural data gleaned from separate samples imaged using different modalities by exploiting biological structures identifiable by both light and electron microscopy as intrinsic fiducials. We demonstrate here an application of iCLEM, where we utilized gap junctions and mechanical junctions between muscle cells in the heart as intrinsic fiducials to correlate ultrastructural measurements from transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM) with molecular organization from confocal microscopy and single molecule localization microscopy (SMLM). We further demonstrate how iCLEM can be integrated with computational modeling to discover structure-function relationships. Thus, we present iCLEM as a novel approach that complements existing CLEM methods and provides a generalizable framework that can be applied to any set of imaging modalities, provided suitable intrinsic fiducials can be identified.

2.
J Transl Med ; 22(1): 222, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429821

RESUMO

BACKGROUND: Colonoscopy is a classic diagnostic method with possible complications including abdominal pain and diarrhoea. In this study, gut microbiota dynamics and related metabolic products during and after colonoscopy were explored to accelerate gut microbiome balance through probiotics. METHODS: The gut microbiota and fecal short-chain fatty acids (SCFAs) were analyzed in four healthy subjects before and after colonoscopy, along with seven individuals supplemented with Clostridium butyricum. We employed 16S rRNA sequencing and GC-MS to investigate these changes. We also conducted bioinformatic analysis to explore the buk gene, encoding butyrate kinase, across C. butyricum strains from the human gut. RESULTS: The gut microbiota and fecal short-chain fatty acids (SCFAs) of four healthy subjects were recovered on the 7th day after colonoscopy. We found that Clostridium and other bacteria might have efficient butyric acid production through bioinformatic analysis of the buk and assessment of the transcriptional level of the buk. Supplementation of seven healthy subjects with Clostridium butyricum after colonoscopy resulted in a quicker recovery and stabilization of gut microbiota and fecal SCFAs on the third day. CONCLUSION: We suggest that supplementation of Clostridium butyricum after colonoscopy should be considered in future routine clinical practice.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Microbiota , Humanos , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Ácidos Graxos Voláteis/metabolismo , Colonoscopia , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo
3.
Gut Microbes ; 16(1): 2313770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38334087

RESUMO

The widespread prevalence of Helicobacter pylori infection, particularly in China, contributes to the development of gastrointestinal diseases. Antibiotics have limitations, including adverse reactions and increased antibiotic resistance. Therefore, identification of novel gastrogenic probiotics capable of surviving the acidic gastric environment and effectively combating H. pylori infection has potential in restoring gastric microbiota homeostasis. Five novel strains of human gastrogenic Weizmannia coagulans (BCF-01-05) were isolated from healthy gastric mucosa and characterized using 16S rDNA identification. Acid resistance, H. pylori inhibition, and adherence to gastric epithelial cells were evaluated in in-vitro experiments and the molecular mechanism explored in in-vivo experiments. Among the gastric-derived W. coagulans strains, BCF-01 exhibited the strongest adhesion and H. pylori inhibition, warranting further in-vivo safety evaluation. Through 16S rRNA sequencing of a mouse model, BCF-01 was determined to significantly restore H. pylori-associated gastric dysbiosis and increase the abundance of potential probiotic bacteria. Furthermore, BCF-01 enhanced mucosal tight junction protein expression and inhibited the TLR4-NFκB-pyroptosis signaling pathway in macrophages, as demonstrated by qRT-PCR and western blotting.These findings highlight the potential of BCF-01 in the prevention and control of H. pylori infection. Specifically, treatment with BCF-01 effectively restored gastric microecology and improved H. pylori-mediated mucosal barrier destruction while reducing inflammation through inhibition of the TLR4-NFκB-pyroptosis signaling pathway in macrophages. BCF-01 is a promising alternative to traditional triple therapy for H. pylori infections, offering minimal side effects with high suitability for high-risk individuals.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Probióticos , Animais , Camundongos , Humanos , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , RNA Ribossômico 16S/genética , Receptor 4 Toll-Like , Mucosa Gástrica/metabolismo , Controle de Infecções
4.
Cancer Gene Ther ; 31(4): 612-626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291129

RESUMO

Dysregulation of histone acetylation is widely implicated in tumorigenesis, yet its specific roles in the progression and metastasis of esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we profiled the genome-wide landscapes of H3K9ac for paired adjacent normal (Nor), primary ESCC (EC) and metastatic lymph node (LNC) esophageal tissues from three ESCC patients. Compared to H3K27ac, we identified a distinct epigenetic reprogramming specific to H3K9ac in EC and LNC samples relative to Nor samples. This H3K9ac-related reprogramming contributed to the transcriptomic aberration of targeting genes, which were functionally associated with tumorigenesis and metastasis. Notably, genes with gained H3K9ac signals in both primary and metastatic lymph node samples (common-gained gene) were significantly enriched in oncogenes. Single-cell RNA-seq analysis further revealed that the corresponding top 15 common-gained genes preferred to be enriched in mesenchymal cells with high metastatic potential. Additionally, in vitro experiment demonstrated that the removal of H3K9ac from the common-gained gene MSI1 significantly downregulated its transcription, resulting in deficiencies in ESCC cell proliferation and migration. Together, our findings revealed the distinct characteristics of H3K9ac in esophageal squamous cell carcinogenesis and metastasis, and highlighted the potential therapeutic avenue for intervening ESCC through epigenetic modulation via H3K9ac.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Histonas/genética , Lisina/uso terapêutico , Neoplasias Esofágicas/patologia , Acetilação , Proliferação de Células/genética , Carcinogênese , Proteínas do Tecido Nervoso , Proteínas de Ligação a RNA
5.
Mol Cell Biochem ; 479(1): 85-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37036634

RESUMO

The importance of sarcoplasmic reticulum (SR) Ca2+-handling in heart has led to detailed understanding of Ca2+-release and re-uptake protein complexes, while less is known about other endoplasmic reticulum (ER) functions in the heart. To more fully understand cardiac SR and ER functions, we analyzed cardiac microsomes based on their increased density through the actions of the SR Ca2+-ATPase (SERCA) and the ryanodine receptor that are highly active in cardiomyocytes. Crude cardiac microsomal vesicles loaded with Ca oxalate produced two higher density subfractions, MedSR and HighSR. Proteins from 20.0 µg of MV, MedSR, and HighSR protein were fractionated using SDS-PAGE, then trypsinized from 20 separate gel pieces, and analyzed by LC-MS/MS to determine protein content. From 62,000 individual peptide spectra obtained, we identified 1105 different proteins, of which 354 were enriched ≥ 2.0-fold in SR fractions compared to the crude membrane preparation. Previously studied SR proteins were all enriched, as were proteins associated with canonical ER functions. Contractile, mitochondrial, and sarcolemmal proteins were not enriched. Comparing the levels of SERCA-positive SR proteins in MedSR versus HighSR vesicles produced a range of SR subfraction enrichments signifying differing levels of Ca2+ leak co-localized in the same membrane patch. All known junctional SR proteins were more enriched in MedSR, while canonical ER proteins were more enriched in HighSR membrane. Proteins constituting other putative ER/SR subdomains also exhibited average Esub enrichment values (mean ± S.D.) that spanned the range of possible Esub values, suggesting that functional sets of proteins are localized to the same areas of the ER/SR membrane. We conclude that active Ca2+ loading of cardiac microsomes, reflecting the combined activities of Ca2+ uptake by SERCA, and Ca2+ leak by RyR, permits evaluation of multiple functional ER/SR subdomains. Sets of proteins from these subdomains exhibited similar enrichment patterns across membrane subfractions, reflecting the relative levels of SERCA and RyR present within individual patches of cardiac ER and SR.


Assuntos
Retículo Sarcoplasmático , Espectrometria de Massas em Tandem , Retículo Sarcoplasmático/metabolismo , Cromatografia Líquida , Retículo Endoplasmático/metabolismo , Microssomos/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Sinalização do Cálcio , Cálcio/metabolismo
6.
Comput Biol Med ; 169: 107881, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159401

RESUMO

Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.


Assuntos
Aprendizado Profundo , Humanos , Semântica , Fundo de Olho , Aprendizado de Máquina , Algoritmos
7.
Food Funct ; 14(24): 10882-10895, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37987614

RESUMO

The eradication of Helicobacter pylori is an urgent global issue. However, the traditional regimens have several limitations. Thus, we propose the idea of treating bacterial gastric disease with the objective of eliminating gastric pathogenic bacteria and enhancing gastroprotective effects using gastric probiotics. In this study, a total of 12 Lactobacillus strains were isolated from the gastric mucosa of healthy donors. After evaluation using a weight scoring system, Lactobacillus paragasseri strain LPG-9 was identified as the most promising probiotic for gastric disease, with the highest acid-resistance and the best adhesion characteristics. Gastric colonisation, H. pylori inhibition, anti-inflammatory, and gastric homeostasis effects of LPG-9 were confirmed in C57BL/6 mice. Finally, a safety evaluation and whole-genome sequencing were performed. Based on the results of this study, LPG-9 originates from the gastric microbiota and is a promising probiotic for gastric disease, particularly H. pylori-induced gastritis, providing a solution to this global issue.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Probióticos , Gastropatias , Camundongos , Animais , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/prevenção & controle , Camundongos Endogâmicos C57BL , Lactobacillus , Mucosa Gástrica/patologia
8.
Mol Cytogenet ; 16(1): 27, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858167

RESUMO

BACKGROUND: Down syndrome myeloid hyperplasia includes transient abnormal myelopoiesis (TAM) and the myeloid leukemia associated with Down syndrome (ML-DS). The mutation of GATA1 gene is essential in the development of Down syndrome combined with TAM or ML-DS. Some patients with TAM are asymptomatic and may also present with severe manifestations such as hepatosplenomegaly and hydrops. CASE PRESENTATION: We report two cases of prenatally diagnosed TAM. One case was a rare placental low percentage 21 trisomy mosiacism, resulting in the occurrence of a false negative NIPT. The final diagnosis was made at 36 weeks of gestation when ultrasound revealed significant enlargement of the foetal liver and spleen and an enlarged heart; the foetus eventually died in utero. We detected a placenta with a low percentage (5-8%) of trisomy 21 mosiacism by Copy Number Variation Sequencing (CNV-seq) and Fluorescence in situ hybridization (FISH). In another case, foetal oedema was detected by ultrasound at 31 weeks of gestation. Two foetuses were diagnosed with Down syndrome by chromosomal microarray analysis via umbilical vein puncture and had significantly elevated cord blood leucocyte counts with large numbers of blasts. The GATA1 Sanger sequencing results suggested the presence of a [NM_002049.4(GATA1):c.220G > A (p. Val74Ile)] hemizygous variant and a [NM_002049.4(GATA1):c.49dupC(p. Gln17ProfsTer23)] hemizygous variant of the GATA1 gene in two cases. CONCLUSION: It seems highly likely that these two identified mutations are the genetic cause of prenatal TAM in foetuses with Down syndrome.

9.
Sci Rep ; 13(1): 17936, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863910

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a potentially life-threatening condition in children with sepsis. We herein aimed to identify clinical and laboratory predictors of HLH in children with sepsis. We conducted a retrospective study of 568 children with sepsis admitted to Guangdong Women and Children Hospital from January 2019 to June 2022. HLH, while rare (6.34%), proved to be a highly fatal complication (37.14%) in children with sepsis. Children with HLH had higher levels of aspartate aminotransferase, lactate dehydrogenase, triglycerides, and ferritin than children without HLH; conversely, they displayed decreased levels of neutrophils, hemoglobin, platelets, fibrinogen, and albumin. Additionally, the HLH group showed higher rates of prolonged fever (> 10 days), hepatomegaly, and splenomegaly than the non-HLH group. Our retrospective analysis identified hypofibrinogenemia (OR = 0.440, P = 0.024) as an independent predictor for the development of HLH in patients with sepsis. The optimal cutoff value for fibrinogen was found to be < 2.43 g/L. The area under the curve for diagnosing HLH was 0.80 (95% confidence interval: 0.73-0.87, P < 0.0001), with a sensitivity of 72.41% and specificity of 76.27%. Thus, hypofibrinogenemia emerges as a potentially valuable predictor for HLH in children with sepsis.


Assuntos
Afibrinogenemia , Linfo-Histiocitose Hemofagocítica , Sepse , Humanos , Criança , Feminino , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/diagnóstico , Estudos Retrospectivos , Afibrinogenemia/complicações , Sepse/complicações , Sepse/diagnóstico , Fibrinogênio
10.
JACC Clin Electrophysiol ; 9(12): 2425-2443, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37498248

RESUMO

BACKGROUND: Propagation of action potentials through the heart coordinates the heartbeat. Thus, intercalated discs, specialized cell-cell contact sites that provide electrical and mechanical coupling between cardiomyocytes, are an important target for study. Impaired propagation leads to arrhythmias in many pathologies, where intercalated disc remodeling is a common finding, hence the importance and urgency of understanding propagation dependence on intercalated disc structure. Conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, because of lack of quantitative structural data at subcellular through nano scales. OBJECTIVES: This study sought to quantify intercalated disc structure at these spatial scales in the healthy adult mouse heart and relate them to chamber-specific properties of propagation as a precursor to understanding the effects of pathological intercalated disc remodeling. METHODS: Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. RESULTS: By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by interchamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. CONCLUSIONS: These data provide the first stepping stone to elucidating chamber-specific effects of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.


Assuntos
Miocárdio , Miócitos Cardíacos , Camundongos , Animais , Frequência Cardíaca , Miócitos Cardíacos/fisiologia , Arritmias Cardíacas
11.
MedComm (2020) ; 4(4): e329, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37492785

RESUMO

Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor­derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.

12.
Bioeng Transl Med ; 8(4): e10533, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37476068

RESUMO

CD80 is an important co-stimulatory molecule that participates in the immune response. Soluble CD80 can induce T cell activation and overcome PDL1-mediated immune suppression. In this study, we aimed to construct recombinant Lactococcus lactis for oral delivery of the soluble CD80 (hsCD80) protein or the fusion protein containing the cholera toxin B subunit (CTB) and hsCD80 (CTB-hsCD80) under the control of the nisin-inducible expression system. The recombinant L. lactis expressed and secreted hsCD80 or CTB-hsCD80 fusion proteins after induction by nisin in vitro and in the enteric cavity. Additionally, the CTB-hsCD80 fusion protein showed uptake by intestinal epithelial cells, was cleaved by the furin protease, and was released as free hsCD80 protein into the blood circulation. Orally administered hsCD80 and CTB-hsCD80 containing L. lactis increased the proportion of activated T cells in the spleen and intestinal epithelium, inhibited tumor growth, and prolonged the survival of tumor-bearing mice. The hsCD80-containing L. lactis showed greater therapeutic effects on primary colonic adenoma in APCmin/- mice and completely suppressed tumor growth. Further, recombinant CTB-hsCD80 in L. lactis was more efficient than hsCD80-containing bacteria in inhibiting the growth of xenografted colon cancer and melanoma cells. hsCD80 engineered probiotics may serve as a promising new approach for antitumor immunotherapy, especially for colorectal cancer.

13.
Front Pharmacol ; 14: 1205323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292154

RESUMO

Background: The relationships among intestinal dysbiosis, bile acid (BA) metabolism disorders, and ulcerative colitis pathogenesis are now recognized. However, how specific strains regulate BA metabolism to alleviate colitis is still unclear. This study investigated the effects of Bacteroides dorei on the development of acute colitis and elucidated the underlying mechanisms. Methods: The safety of BDX-01 was evaluated in vitro and in vivo. 2.5% dextran sulfate sodium (DSS) induced colitis in C57BL/6 mice, Caco-2, and J774A.1 cells were used to evaluate the anti-inflammatory effect of BDX-01. qPCR and Western blotting were used to detect the expression of inflammatory pathways. Microbiota composition was analyzed by 16S rRNA gene sequencing. Enzyme activity analysis and targeted metabolomics were used to analyze fecal bile salt hydrolase (BSH) and BA levels. Antibiotic-induced pseudo-germ-free mice were used to investigate the role of gut microbiota in the alleviation of colitis by BDX-01. Results: We confirmed the safety of novel strain Bacteroides dorei BDX-01 in vitro and in vivo. Oral BDX-01 administration significantly ameliorated the symptoms and pathological damage of DSS-induced acute colitis. Moreoever, 16S rRNA sequencing and enzyme activity analysis showed that BDX-01 treatment increased intestinal BSH activity and the abundance of bacteria harboring this enzyme. Targeted metabolomics revealed that BDX-01 significantly increased intestinal BA excretion and deconjugation. Certain BAs act as FXR agonists. The ß-muricholic acid (ßMCA): taurine ß-muricholic acid (T-ßMCA) and cholic acid (CA): taurocholic acid (TCA) ratios and the deoxycholic acid (DCA) level decreased markedly in the colitis models but increased substantially in BDX-01-treated mice. The colonic farnesoid X receptor (FXR) and fibroblast growth factor 15 (FGF15) were upregulated in mice treated with BDX-01. BDX-01 downregulated the expression of colonic proinflammatory cytokines pyrin domain-containing 3 (NLRP3), ASC, cleaved caspase-1, and IL-1ß. Antibiotic treatment didn't abolish the protective effect of BDX-01 on colitis. In vitro studies showed TßMCA abolished the effects of BDX-01 on FXR activation and inhibition of the NLRP3 inflammasome activation. Conclusion: BDX-01 improved DSS-induced acute colitis by regulating intestinal BSH activity and the FXR-NLRP3 signaling pathway. Our findings indicate that BDX-01 is a promising probiotic to improve the management of ulcerative colitis.

14.
J Cancer ; 14(8): 1336-1349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283787

RESUMO

Potassium (K+) is a vital intracellular cation. In the human body, it regulates membrane potential, electrical excitation, protein synthesis, and cell death. Recent studies revealed that dying cancer cells release potassium into the tumor microenvironment (TME), thereby influencing cell survival-related events. Several investigations reported that potassium channels and high potassium levels influence apoptosis. Increasing extracellular potassium and inhibiting K+ efflux channels significantly block the apoptotic machinery. However, it is unknown whether a high-potassium environment also affects other types of cell death such as ferroptosis. In the present study, cell counting kit (CCK-8), colony formation ability, and 5-ethynyl-2'-deoxyuridine (EdU) assays demonstrated that a high-potassium environment reverses erastin-induced ferroptosis. RNA sequencing (RNA-Seq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analyses indicated that high potassium levels attenuated the unfolded protein response that is characteristic of endoplasmic reticulum (ER) stress. The ER transmembrane proteins PRKR-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6) are recognized as ER stress sensors. Here, the PERK blocker GSK2606414 significantly rescued ferroptosis. The present work also disclosed that the ER-related gene activating transcription factor 3 (ATF3) played a vital role in regulating ferroptosis in a high-potassium environment. The foregoing results revealed the roles of potassium and the TME in cancer cell ferroptosis and provided a potential clinical therapeutic strategy for cancer.

15.
Res Sq ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798315

RESUMO

The importance of sarcoplasmic reticulum (SR) Ca-handling in heart has led to detailed understanding of Ca-release and re-uptake protein complexes, while less is known about other endoplasmic reticulum (ER) functions in the heart. To more fully understand cardiac SR and ER functions, we analyzed cardiac microsomes based on their increased density through the actions of the SR Ca-ATPase (SERCA) and the ryanodine receptor that are highly active in cardiomyocytes. Crude cardiac microsomal vesicles loaded with Ca oxalate produced two higher density subfractions, MedSR and HighSR. Analyses of protein enrichments from the 3 membrane preparations (crude microsomes, MedSR, and HighSR), showed that only a third of microsomal proteins in heart, or 354 proteins, were enriched ≥2.0-fold in SR. Previously studied SR proteins were all enriched, as were proteins associated with canonical ER functions. Contractile, mitochondrial, and sarcolemmal proteins were not enriched. Comparing the levels of SERCA-positive SR proteins in MedSR versus HighSR vesicles produced a range of SR subfraction enrichments signifying differing levels of Ca leak (ryanodine receptor) co-localized in the same membrane patch. All known junctional SR proteins were more enriched in MedSR, while canonical ER proteins were more enriched in HighSR membrane. Proteins from other putative ER/SR subdomains also showed characteristic distributions among SR subpopulations. We conclude that active Ca loading of cardiac microsomes, reflecting the combined activities of Ca uptake by SERCA, and Ca leak by RyR, permits evaluation of multiple functional ER/SR subdomains. Sets of proteins from these subdomains exhibited similar enrichment patterns across membrane subfractions, reflecting the relative levels of SERCA and RyR present within individual patches of cardiac ER and SR.

16.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36824727

RESUMO

During each heartbeat, the propagation of action potentials through the heart coordinates the contraction of billions of individual cardiomyocytes and is thus, a critical life process. Unsurprisingly, intercalated discs, which are cell-cell contact sites specialized to provide electrical and mechanical coupling between adjacent cardiomyocytes, have been the focus of much investigation. Slowed or disrupted propagation leads to potentially life-threatening arrhythmias in a wide range of pathologies, where intercalated disc remodeling is a common finding. Hence, the importance and urgency of understanding intercalated disc structure and its influence on action potential propagation. Surprisingly, however, conventional modeling approaches cannot predict changes in propagation elicited by perturbations that alter intercalated disc ultrastructure or molecular organization, owing to lack of quantitative structural data at subcellular through nano scales. In order to address this critical gap in knowledge, we sought to quantify intercalated disc structure at these finer spatial scales in the healthy adult mouse heart and relate them to function in a chamber-specific manner as a precursor to understanding the impacts of pathological intercalated disc remodeling. Using super-resolution light microscopy, electron microscopy, and computational image analysis, we provide here the first ever systematic, multiscale quantification of intercalated disc ultrastructure and molecular organization. By incorporating these data into a rule-based model of cardiac tissue with realistic intercalated disc structure, and comparing model predictions of electrical propagation with experimental measures of conduction velocity, we reveal that atrial intercalated discs can support faster conduction than their ventricular counterparts, which is normally masked by inter-chamber differences in myocyte geometry. Further, we identify key ultrastructural and molecular organization features underpinning the ability of atrial intercalated discs to support faster conduction. These data provide the first stepping stone to elucidating chamber-specific impacts of pathological intercalated disc remodeling, as occurs in many arrhythmic diseases.

17.
Heliyon ; 9(1): e12461, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36685424

RESUMO

Valproic acid (VPA) is a commonly used antiepileptic drug (AED). Aplastic crisis is defined as acute arrest of hematopoiesis. Stevens-Johnson syndrome (SJS) is a fatal cutaneous adverse drug reaction. We herein report a rare case of aplastic crisis and SJS in a single pediatric patient that were probably caused by VPA. A 2-year-old girl was involved in a car accident. She was diagnosed with skull fractures, cerebral contusions, pulmonary contusions, and fractures of the left iliac bone by computed tomography. VPA was administered as prophylaxis for post-traumatic epilepsy. From day 13, she developed repeated high fevers, and multiple antibiotics were ineffective; she was then transferred to our pediatric intensive care unit. After transfer, she developed liver function impairment, decreased peripheral blood cell counts, and skin damage. After withdrawal of the VPA and administration of prednisone, intravenous immunoglobulin, local skin care, and nutritional support, her body temperature normalized and her hematopoietic function and skin lesions successively resolved. She was transferred out of the pediatric intensive care unit on day 56 and discharged on day 70. At the 6-month follow-up, a blood examination was normal, and repeat computed tomography revealed multiple softening foci of the bilateral brain and less subdural effusion than before. To our knowledge, no report to date has described aplastic crisis and SJS in a single patient. The purpose of this paper is to increase clinicians' knowledge in the treatment of adverse drug reactions (ADRs) and emphasize the importance of standardized application and strict monitoring of VPA in patients with post-traumatic brain trauma.

18.
Probiotics Antimicrob Proteins ; 15(4): 821-831, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35060081

RESUMO

Lead (Pb2+) exposure cause a potential hazard to human health and the ecological environment; however, prevention and treatment of Pb2+ toxicity remain problems. The aim of this study is to isolate a novel probiotic lead (Pb2+)-resistant Lactobacillus strain from the infant gut microbiota and to determine whether they have the probiotic properties and investigate its preventive and therapeutic effects in the early-life Pb2+ exposure mouse model. In the present study, a total of 64 Pb2+-resistant colonies were isolated from the infant gut microbiota. Of these colonies, SYF-08, identified as Lacticaseibacillus casei, exhibited a Pb2+-binding capacity and Pb2+ tolerance. The in vivo study showed that SYF-08 treatment could effectively reduce Pb2+ levels in the blood, alleviate Pb2+ enrichment in bone and brain tissues, and recover the intestinal and brain damage in both dams and offspring. SYF-08 treatment also improved the antioxidant index in the liver and kidney tissues, while increasing the diversity of the intestinal microbiota of the offspring. The results of the in vitro and in vivo studies suggest that SYF-08, isolated from infant fecal samples, is a promising candidate probiotic against Pb2+ toxicity.


Assuntos
Lacticaseibacillus casei , Intoxicação por Chumbo , Probióticos , Animais , Humanos , Lactente , Camundongos , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Lacticaseibacillus casei/efeitos dos fármacos , Lacticaseibacillus casei/isolamento & purificação , Lacticaseibacillus casei/metabolismo , Chumbo/metabolismo , Chumbo/farmacologia , Chumbo/toxicidade , Intoxicação por Chumbo/microbiologia , Intoxicação por Chumbo/terapia , Modelos Animais , Óxido Nítrico/metabolismo , Probióticos/isolamento & purificação , Probióticos/uso terapêutico
19.
J Environ Manage ; 326(Pt B): 116751, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435142

RESUMO

Researchers have documented the negative effects of refractory chemicals and emergent pollutants in landfill leachate (LL) that cannot be degraded using conventional methods. The propagation, invasion, and deleterious effects of several LL hazards affect aquatic species, the environment, and food outlets, causing significant safety issues. These include cancer risks, chronic exposure, and reproductive consequences. Alternatively, solar energy is a sustainable solution for treating landfill leachate to benefit humans and the environment. In this work, a thorough bibliometric and systematic analysis of studies that employed solar energy for landfill leachate remediation over the past decade was conducted in order to determine trends, and future research areas. In addition to the energy demand, the economic aspect and the advantages of using solar power to treat landfill leachate were discussed. Additionally, the study gives specific suggestions for future research purposes and important problems. The reviewed literature revealed that combining solar-based physical-chemical and biological processes has proven to be the most efficient method for landfill leachate degradation. It also appears from the bibliometric study that more collaboration and contribution are needed to develop solar-based landfill leachate treatment. This study concludes that solar-powered landfill leachate remediation techniques would considerably increase the effectiveness of treated leachate reutilization, advancing the cause of environmental sustainability.


Assuntos
Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Saneamento , Eliminação de Resíduos Líquidos/métodos
20.
Langmuir ; 38(37): 11354-11361, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36074906

RESUMO

The recycling of strontium ions (Sr2+) from sea water has been well known for its good cost-effectiveness and environment friendliness. Herein, we modified the surface of TiO2 nanotubes (TNTs) prepared by porous titanium anodization via hydrothermal (HT) reaction and synthesized a highly efficient adsorbent for the repeated recycling of Sr2+. TNTs with a high specific surface area were manufactured on porous titanium by internal anodic oxidation. The as-prepared TNTs were treated by HT method to synthesize adsorption materials with a tubular bottom and grass-type top structure loaded with Na+. The surface cracks were eliminated by annealing pretreatment, and the investigation found that the 6 h HT reaction most effectively increased the Na+ content in the adsorbent. The as-synthesized adsorbents (HT-6TNTs) were used to recover Sr2+, and the maximum adsorption efficiency (approximately 100%) and adsorption equilibrium were observed within 10 h. Meanwhile, three consecutive cycles of adsorption experiments proved the uniform behavior of the HT-6TNTs in the reproducible recycling of Sr2+. In addition, by increasing the anodization time of TNTs from 0.5 to 3 h, the maximum adsorption capacity can be increased from 4.68 to 36.15 mg·unit-1, approximately 7.7 times higher.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...